Na FreeHostingu Endora běží desítky tisíc webů. Přidejte se ještě dnes!

Vytvořit web zdarma

Na FreeHostingu Endora běží desítky tisíc webů. Přidejte se ještě dnes!

Vytvořit web zdarma

Binomická věta

Vlastnosti kombinačních čísel ilustruje následující schéma, které se nazývá Pascalův trojúhelník:

Pokud si čísla ve schématu vyčíslíme, dostaneme Pascalův trojúhelník tvaru:

Pascalův trojúhelník má využití u tzv. binomické věty, která říká:

(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k}b^{k}, \ a, b \in \R; n \in \N

Tuto větu lze vysvětlit také následujícím způsobem:

Mějme vzorce (a+b)^3=a^3+3a^2b+3ab^2+b^3 a (a-b)^3=a^3-3a^2b+3ab^2-b^3. Zmiňované vzorce není nutné si pamatovat, jelikož je lze rychle odvodit podle následujícího schématu.

Načrtneme si trojúhelník, jehož dvě strany jsou složeny pouze z jedniček. Vnitřek trojúhelníku je složen s čísel, které jsou součtem dvou čísel nad. Tento trojúhelník se nazývá Pascalův trojúhelník.

Začněme nejprve vzorcem (a+b)^3=a^3+3a^2b+3ab^2+b^3. Závoraka je umocňena na třetí, proto vezmeme třetí řádek, ve kterém se nachází číselná kombinace 1-3-3-1. Protože je v závorce součet, výsledný rozložený výraz bude obsahovat samá +.

Další věcí, kterou je nutno si uvědomit, jsou exponenty v rozloženém výrazu u proměnných a, b. Závorka je umocněna na třetí, pak tedy začneme a^3b^0. Protože cokoliv umocněno na nultou je jedna, pak tedy a^3.

U dalšího čísla postupně snižujeme exponent u proměnné a a naopak zvyšujeme u proměnné b. Podívejme se na třetí řádek trojúhelníku a vidíme číselnou kombinaci 1-3-3-1. Této kombinaci budou odpovídat členy a^3b^0 - a^2b^1 - a^1b^2 - a^0b^3. Pak tedy:

(a+b)^3=1a^3b^0 + 3a^2b^1 + 3a^1b^2 + 1a^0b^3=\\=a^3+3a^2b+3ab^2+b^3

Podívějme se, pokud bychom měli výraz (a+b)^5. Podíváme se do Pascalova trojúhelníku a vidíme číselnou kombinaci 1-5-10-10-5-1. V závorce je +, pak tedy i ve výsledném výrazu bude všude +. Exponenty u proměnné a postupně snižujeme z čísla 5. U proměnné b naopak jdeme z 0 do čísla 5

(a+b)^5=1a^5b^0+5a^4b^1+10a^3b^2+10a^2b^3+5a^1b^4+1a^0b^5=\\=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5


Jak by to bylo, pokud bychom měli vzorec s rozdílem, tedy

(a-b)^3=a^3-3a^2b+3ab^2-b^3

Postup je úplně stejný jako v předchozích příkladech, kdy se v závorce objevil součet. Jediným rozdílem je pouze změna znamének ve finálním výrazu. Tato změna je provedena tak, že každé druhé plus v předchozích příkladech nahradíme mínusem, tedy namísto kombinace + + + + budeme mít kombinaci + - + - . Porovnejme:

(a+b)^3=a^3+3a^2b+3ab^2+b^3

(a-b)^3=a^3-3a^2b+3ab^2-b^3

(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5

(a-b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5

!!!Pozor, tento postup neplatí pro vzorce a^3+b^3, a^3-b^3, a^4+b^4, a^4-b^4, atd. V tomto případě nejsme schopni nalézt podobné univerzální řešení a je nutné využít tabulky.

Aktuality

Písemná práce

Test třídy ___

Termín:

Téma:

 

Písemná práce

Test třídy ___

Termín:

Téma:

 

Písemná práce

Test třídy ___

Termín:

Téma:

 

Písemná práce

Test třídy ___

Termín:

Téma:

 

Písemná práce

Test třídy ___

Termín:

Téma: